
Prediction with V&V and Fault-Tolerance
Strategies for Mandelbugs

 Pooja Maltare,Vishal Sharma
Department of CSE,Jawaharlal Institute Of Technology vidhya Vihar Borawan(M.P), India

Abstract: The information about which modules in a software
system’s future version are potentially Mandelbugs is a
valuable aid for quality managers and testers. Mandelbugs
prediction promises to indicate these Mandelbugs -vulnerable
modules. Constructing effective defect prediction models in an
industrial setting involves the decision from what data source
the Mandelbugs predictors should be derived. In this paper
we compare Mandelbugs prediction consequences based on
three different data sources of a large industrial software
system to answer the question what repositories to mine. In
addition, we investigate whether a combination of different
data sources improves the prediction consequences. The
findings indicate that predictors derived from static code and
design analysis provide slightly yet still significant better
outcome than predictors derived from version control, while a
combination of all data sources showed no further
improvement. we aim to combine prediction with V&V and
fault-tolerance strategies.

Keywords: Mandelbugs, predictors, bug features, fault-
tolerance strategies.

I. INTRODUCTION
Mandelbug: a bug whose activation and/or error
propagation are “complex”, where complexity can be
caused by the possibility of a time lag between the fault
activation and the failure occurrence, or the interactions of
the software application with its system-internal
environment (hardware, operating system, or other
applications), the timing of inputs and operations (relative
to each other), and the sequencing of inputs and operations.
Knowing which modules are likely to contain Mandelbugs
in advance can assist in directing software quality
assurance measures such as inspection and testing to these
potentially critical modules. With d Mandelbugs prediction,
the defect- prone modules in an upcoming version of a
software system can be predicate from data about previous
versions. Thus, Mandelbugs prediction is a promising aid to
increase the effectiveness and efficiency of these usually
costly quality assurance measures [1]. The feasibility of
predicting Mandelbugs modules has been subject to
numerous empirical studies. These studies exploit different
sets of metrics as Mandelbugs predictors, i.e. independent
variables that are presume to indicate the defectiveness of
software modules. Static product metrics are one category
of metrics that have been frequently used as Mandelbugs
predictors. Examples are metrics related to size,
complexity, object-oriented design, and system structure.
Another category includes process metrics characterizing
various aspects and activities of software development.
Examples are metrics related to change history, code churn,
or defect resolutions. Finally, resource metrics like metrics

about development personnel have recently been involved
in empirical studies. Such metrics have been derived from
social networks of developers or their contributions to the
software system. Collecting and preprocessing historical
data and deriving metrics suitable for constructing
prediction models can cause considerable effort. It
represents one of the major cost factors in establishing
Mandelbugs prediction in perform. The data has to be
retrieved by mining software repositories. Repositories and
corporate databases such as versioning systems, issue
tracking systems, build systems, or project documentation.
As the data in these repositories and databases has been
collected for a specific purpose other than defect
prediction, the structure and quality of the data is often
inappropriate to derive meaningful metrics. Thus, the
relevant data has to be extracted, restructured, cleaned,
interpreted and validated before it can be used for defect
prediction. Further effort is required to integrate data from
heterogeneous repositories and databases with different
semantics and levels of granularity, timeliness, quality and
completeness. The required effort for mining and data
preparation limits the number of repositories and databases
that can be included when constructing Mandelbug
prediction models in a real-world setting. Thus, defect
prediction is often based on metrics derived from a single
data source, capturing only a small fraction of the available
project history spread over different repositories and
databases. However, little is known about what data
sources and related metrics are preferable for Mandelbug
prediction as only few of the available empirical studies
focus on more than one category of metrics.

II. RELATED WORK

In the previous decades software bugs in huge and complex
system have broadly been studied for a number of
purposes. the majority of the studies were aimed at
understanding and differentiate bugs in terms of their
location in the code and their features, Gabriella Carrozza
in at al[1] they have investigated how to predict the
location of Mandelbugs in complex software systems. They
have found that Mandelbugs account for a noticeable share
of bugs, and that there are components more prone to
Mandelbugs than others. This fact motivates the use of fault
prediction to focus V&V activities and fault-tolerance
mechanisms found that using both traditional software
metrics and a novel set of metrics (based on concurrency,
I/O and exception handling constructs), fault prediction can
achieve high accuracy.
 K. S. Trivedi in at al [2] presents a closed-form expression
of the mean time to recovery from these bugs. Measures of

Pooja Maltare et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 262-264

www.ijcsit.com 262

interest including mean time to recovery and system
unavailability are computed. A numerical and parametric
sensitivity analysis of the model parameters are carried out.
This analysis allows the designer to find out important
parameter(s) for the recovery from failures due to
Mandelbugs.
M. Grottke in at al [3] analyzes the faults discovered in the
on-board software for 18 JPL/NASA space missions. They
have presented the proportions of the various fault types
and study how they have evolved over time. Moreover,
examine whether or not the fault type and attributes such as
the failure effect are independent.
Kevin S. Killourhy in at al [4] they have proposed collect a
data set, develop an evaluation procedure, and measure the
performance of many anomalydetection algorithms on an
equal basis. In the process they have established which
detectors have the lowest error rates on our data (e.g., the
Nearest Neighbor (Mahalanobis) detector), and provide a
data set and evaluation methodology that can be used by
the community to assess new detectors and report
comparative results.
Pedro Fonseca in at al [5] they have able to find a
considerable number of concurrency bugs in a stable
version of the database. Furthermore, the effort to provide
the required annotations was small, and after installing
simple filters we also found the number of false positives to
be modest. All of this was achieved without having to
outline out which were the correct outputs (or final states)
for any given inputs.

III. PROPOSED METHODOLOGY
With software systems becoming increasingly large and
complex, many difficulties in coping with software bugs
arise for developers. Despite good development practices,
thorough testing, and proper maintenance policies, a non-
negligible number of bugs remain in the released software.
Understanding the type of residual bugs is fundamental for
adopting proper countermeasures in current and future
software releases. Depending on the fault triggering
conditions that lead to a failure, developers can introduce
fault-tolerance mechanisms and plan verification and
validation strategies. Prediction with v&v and fault-
tolerance strategies for mandelbugs through our propose
work Deeper understanding of bugs from this perspective
will be a driving factor in implementing policies for cost-
effective software development. Our work will therefore be
devoted to relating these bug features to the software
development process. The objective of this research to
compare consequences from predictions bas on different
data sources and, furthermore, their combination. Therefore
the research contributes a comparative analysis conduct as
a research with consecutive versions of a large industrial
software system. The apply prediction metrics derive from
software repositories and databases for static code and
design analysis, version control, and releases management.
From a practical point of view, the evaluation of the
prediction outcome addresses the following questions:
What repositories and databases should be mined for
prediction metrics? Will the combination of metrics derived

from different data sources achieve “better” prediction
results?
In this research we compare prediction base on three
different data sources of a large industrial software system
to address the questions: “What repositories should be
mined for prediction metrics?” and “Will the combination
of metrics from different data sources improve prediction
results?”. The prediction models were constructed with
metric sets derived from each of the three data sources
(static analysis, version control, and release management)
as well as from their combination. Many consecutive
versions of the software system were used to train the
prediction models and to validate. Our findings indicate
that data from static analysis leads to slightly yet still
significant better prediction than models based on version
control data. Prediction models constructed from any of
these two data sources produce outcome clearly superior to
those based on data from release management, which
produce several consequences even below chance level. No
further improvements could be yield from models based on
the combination of the three data sources when compare
achieve with static analysis data. We combine inform of the
union of the metric sets derive from the different sources.
More sophisticate ways for constructing combinations than
this relatively simple approach of using a union have been
proposed in the field of statistical learning. For example,
the output from separate prediction models trained on each
single data source can also be aggregate by bagging,
stacking or boosting. An investigation of these approaches
in order to build more accurate prediction models and to
produce improved consequences is the subsequently step of
our planned the prediction of Mandelbugs seems to
converge to a constant value during the lifecycle, although
past studies hypothesized that the percentage of
Mandelbugs should be predominant in the long term. To
ineffective quality assurance and testing activities, and by
the possibility of introducing new bugs during the project
lifecycle. Analysis of subtypes indicates that timing-related
faults are the largest part of Mandelbugs, although other
Mandelbugs, such as those involving interactions with
other software and hardware, account for a remarkable
share. Similarly, memory-related aging-relate bugs
predominate, although leaks related to system-dependent
data structures are also frequent. Our propose work fix a
bug significantly affect by the bug the relationships
between fault type and further characteristics, like failure
effect, and failure risk type, and strategies specifically
tailored for Mandelbugs would certainly help differences in
the fault type proportions across missions and the
development of the fault type proportions within a mission,
as the mission duration increases. The development process
for recent missions has changed so that a higher proportion
of the faults created are Bohrbugs Alternatively, for more
recent missions, fault detection and removal techniques
have become more effective at reducing the number of
Mandelbugs remaining in the system at launch time.
Mandelbugs take longer to fix, and require specific
strategies to be dealt with. We found a statistically
important Dissimilarity in the times to fix of Bohrbugs and
Mandelbugs, in that order. In each of these cases,

Pooja Maltare et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 262-264

www.ijcsit.com 263

Mandelbugs be inclined to have a better time to fix than
Bohrbugs. Adopt preparation and tools for improving the
analysis of Mandelbugs would get better the fixing time of
bugs. Furthermore, Mandelbugs are by their nature
complicated to detect by testing, and they need additional
exact technique to be establish through V&V. If the number
of Mandelbugs establish throughout process is high, there
are essentially two alternative. The first one is to employ
additional V&V method for future releases, by bring in
replica checking, stress testing, code reviews. The
subsequent solution is to rely on runtime failure detection
and recuperation mechanisms [7], to recompense for the
longer repair time of these bugs, and allow alone system
downtime while developers look into the root reason of
problems. Recovery method takes in: restart of a
component or a service; reconfiguration of mechanism
(relocation to a miscellaneous surroundings) retry
operation. These approach can be adopt depending on the
method and failure type (a retry can be successful in the
crate of a timing bug in the software function, while a
absolute reboot is desirable intended for bugs in the OS.
furthermore, software aging subject can be disallowed by
software rejuvenation [16], a method that proactively
restart a system in arrange to evade the event of age
failures.

IV. CONCLUSION
Through our propose work Deeper understanding of bugs
from this perspective will be a driving factor in
implementing policies for cost-effective software

development. Our work therefore be devoted to relating
these bug features to thesoftware development process. The
development process for recent missions has changed so
that a higher proportion of the faults created are Bohrbugs
Alternatively, for more recent missions, fault detection and
removal techniques have become more effective at
reducing the number of Mandelbugs remaining in the
system at launch time.

REFERENCE
[1] Gabriella Carrozza_, Domenico Cotroneoy, Roberto Natellay,

Roberto Pietrantuonoy, Stefano Russo,” Analysis and Prediction of
Mandelbugs in an Industrial Software System”
doi.ieeecomputersociety.org/10.1109/ICST.2013.21.

[2] K. S. Trivedi, R. Mansharamani, D. S. Kim, M. Grottke, and M.
Nambiar, “Recovery from failures due to Mandelbugs in IT
systems,” in Proc. Pacific Rim Intl. Symp. Depend. Comp., 2011, pp.
224–233.

[3] M. Grottke, A. Nikora, and K. Trivedi, “An empirical investigation
of fault types in space mission system software,” in Proc. Intl. Conf.
Dep. Sys. and Netwks., 2010, pp. 447–456.

[4] K. Killourhy and R. Maxion, “Comparing anomaly-detection
algorithms for keystroke dynamics,” in Proc. Intl. Conf. Dep. Sys.
and Netwks., 2009, pp. 125–134.

[5] Pedro Fonseca, Cheng Li, and Rodrigo Rodrigues,” Finding
Complex Concurrency Bugs in Large Multi-Threaded Applications”
EuroSys’11, April 10–13, 2011, Salzburg, Austria.

[6] M. Grottke, A. P. Nikora, and K. S. Trivedi, “An empirical
investigationof fault types in space mission system software,” in
Proc. Intl. Conf.Depend. Sys. and Netwks., 2010, pp. 447–456.

[7] M. Grottke, R. Matias, and K. Trivedi, “The fundamentals of
software aging,” in Proc. Wksp. Softw. Aging Rejuv., 2008.

[8] Wikipedia, “LAMP (software bundle),”
http://en.wikipedia.org/wiki/LAMP(software bundle), 2013.

Pooja Maltare et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 262-264

www.ijcsit.com 264

